
How airplanes fly and ships sail

The discussion here is a supplement of calculations and pictures to Eremenko’s note https:

//www.math.purdue.edu/~eremenko/dvi/airplanes.pdf, which has more information and ref-

erences. See also sections 2.1.1, 3.4.1, and 4.2 of Fisher’s Complex Variables.

Let v(z) be a vector field (representing the wind) which is incompressible (i.e. divergence free,

∂xRe v + ∂y Im v = 0) and irrotational (i.e. curl free, ∂x Im v − ∂y Re v = 0).

This is the nicest kind of fluid flow, with no vortices, turbulence, viscosity, etc. Air can behave

like this under favorable conditions. We are interested in flow around an impermeable object. We

represent the object by D, a domain in the complex plane. Impermeability means that v is defined

on the exterior of D and is tangent to the boundary of D. Thus there is no drag; neglecting drag

makes sense for a sufficiently aerodynamic object, such as an airplane wing or a taut sail nearly

parallel to the wind.

We begin with the case of a rotating cylinder, as analyzed in Figure 1.

Figure 1. Let’s try to understand some of this discussion from https://www.

grc.nasa.gov/www/k-12/airplane/cyl.html.
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A more basic version of the flow depicted in Figure 1, where the backgroud velocity is absent,

is the circular vector field v(z) = −ic/z̄ with c real, where D is the disk {z : |z| < R} for some

R > 0. This corresponds to a cylinder rotating in still air. See Figure 2.

Figure 2. A circular flow around a circular object: D = {z : |z| < 2}, v(z) =

−ic/z̄, f(z) = ic/z, F (z) = ic log z, with c = 15. The purple circle is the level set

ImF (z) = 17.2. You can adjust the parameters here: https://www.desmos.com/

calculator/sd2pssl2gx.

To see how the background velocity interacts with this rotation, we use some complex analysis.

When the vector field v(z) is incompressible and irrotational, the function f defined by f(z) = v(z)

is analytic because f obeys the Cauchy–Riemann equations. The function f is called the complex

velocity.

Let F be a complex antiderivative of f , so F ′(z) = f(z). The function F is called a complex

potential. It is significant because for every z, v(z) is tangent to the level set of ImF at z. To

prove this, notice that if s′(t) = v(s(t)) (so s is a parametrized curve representing the trajectory

of a particle in the wind) then

d

dt
F (s(t)) = F ′(s(t))s′(t) = f(s(t))v(s(t)) = |f(s(t))|2.

Taking the imaginary part of both sides gives d
dt ImF (s(t)) = 0, so each s lives on a level set of

ImF and that means that for every z, v(z) is tangent to the level set of ImF at z.

Flow around a cylinder. Let D be a disk centered at the origin. Let v∞ > 0 be the background

velocity of the wind (i.e. the velocity far away from D), and c be a real number which will measure

circulation around D. We will check that if

f(z) = v∞ +
ic

z
− v∞R2

z2
, (1)

then v(z) = f(z) is tangent to the circle |z| = R. To check this, note that we are checking that

v(z) is perpendicular to z when |z| = R, i.e. as on page 8 of Fisher that Re zv(z) = Re zf(z) = 0.

https://www.desmos.com/calculator/sd2pssl2gx
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So we calculate

Re zf(z) = Re v∞z + ic− v∞R2

z
= v∞(Re z)− v∞R2(Re z)/|z|2,

which is 0 when |z| = R. Another way to check the tangency requirement is to calculate

F (z) = v∞z + ic log z + v∞R2/z, ImF (z) = v∞ Im z + ic log |z| − v∞ Im zR2/|z|2,

and note that if |z| = R then ImF (z) = c log |R| which is independent of z. Thus the circle

|z| = R is contained in the level set ImF (z) = c log |R| and since v is tangent to the level set it

is also tangent to the circle. See Figure 3.

Figure 3. A plot when v∞ = 1, c = 2.5, and R = 2. The purple curve is

ImF (z) = 2 and depicts a flowline going very close to the top of the wing. You

can adjust the parameters here: https://www.desmos.com/calculator/

bxv6wo7upp.

It turns out that the above are all the possibilities for f . More precisely, given constants v∞ > 0

and R > 0, if 1) f is analytic on {z : |z| > R}, 2) f obeys lim|z|→∞ f(z) = v∞, and 3) v(z) = f(z)

is tangent to |z| = R (i.e. we have Re zf(z) = 0 when |z| = R) then there is a real c such that f

is given by (1). We will prove this later.

Lift force. The lift force on the wing is

L =
iρ

2

∫
∂D

f(z)2dz = 2πiρv∞c, (2)

where ρ is the density of the fluid. In the notation of Figure 1, the lift is ρGV , where their V is

our v∞, and G = 2πVr, where their Vr is our c.

This formula is called Blasius’ Theorem, and we derive it via Bernoulli’s principle, following

the first few pages of Eremenko’s notes. The first part of the calculation is easier if we write in

https://www.desmos.com/calculator/bxv6wo7upp
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terms of ordered pairs of real numbers rather than in terms of complex numbers. Write the vector

field as v = (v1, v2), so that a particle following it obeys

x′(t) = v1(x(t), y(t)), y′(t) = v2(x(t), y(t)). (3)

Differentiating gives

x′′(t) = ∂xv1x
′(t) + ∂yv1y

′(t), y′′(t) = ∂xv2x
′(t) + ∂yv2y

′(t),

where we are abbreviating ∂xv1(x(t), y(t)) as ∂xv1, and similarly for ∂yv1, etc. Plugging in (3),

and continuing the pattern of abbreviation, gives

x′′(t) = ∂xv1v1 + ∂yv1v2, y′′(t) = ∂xv2v1 + ∂yv2v2.

Plugging in the irrotationality equation ∂yv1 = ∂xv2 gives

x′′(t) = ∂xv1v1 + ∂xv2v2, y′′(t) = ∂yv1v1 + ∂yv2v2.

or

x′′(t) =
1

2
∂x|v|2, y′′(t) =

1

2
∂y|v|2,

or

(x′′(t), y′′(t)) =
1

2
∇|v(x(t), y(t))|2,

where we have now stopped abbreviating. We invoke the physical principles that force is propor-

tional to acceleration and that force is the negative gradient of pressure to conclude that
ρ

2
∇|v(x, y)|2 = −∇p(x, y),

where ρ is the density of the fluid (assumed constant) and p(x, y) is the pressure at (x, y). If two

functions have the same gradient then the difference is a constant, so we conclude that
ρ

2
|v(x, y)|2 + p(x, y) = constant (4)

Equation (4) is called Bernoulli’s principle. The quantity ρ
2 |v|

2 is a kind of kinetic energy, while the

pressure p is a kind of potential energy, so Bernoulli’s principle is a version of the statement that

the sum of kinetic and potential energy is a constant. Note also that a greater speed corresponds

to a lesser pressure, and vice versa.

Let us now compute the force on the cross section D as a complex line integral. At each point,

the force is given by the pressure, and is directed inward (trying to push into the impremeable

object). Thus, if γ : [t0, t1] → ∂D parametrizes boundary so that obstacle is to the left, then

lifting force is

L =

∫ t1

t0

ip(γ(t))γ′(t)dt = −i
ρ

2

∫ t1

t0

|v(γ(t))|2γ′(t)dt,

where for the second equals sign we used (4) and the fact that γ(t0) = γ(t1). But the velocity must

be proportional to γ′ at each point, since the object is impermeable, so there is a real function

λ(t) such that write v(γ(t)) = λ(t)γ′(t). Plugging this in, and using the fact that v̄ = f , we obtain

|v|2γ′ = λ2γ′γ′γ′ = v2γ′ = f2γ′,

which gives

L = −i
ρ

2

∫ t1

t0

f(γ(t))2γ′(t)dt =
iρ

2

∫
∂D

f(z)2dz,
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as desired for the first equals of (2).

To get the second equals of (2), we expand f in a Laurent series as

f(z) = v∞ +
ic

z
+ · · · ,

which implies

f(z)2 = v2∞ +
2icv∞

z
+ · · · ,

so that the residue of f(z)2 is 2icv∞ and∫
∂D

f(z)2dz = 2πi(2icv∞) = −4πcv∞,

which gives the second equals of (2).

More general cross sections. We can treat many other cross sections D by using a mapping,

or change of variables, or change of coordinates, to reduce to the case of a circle. The most general

result of this kind is the Riemann mapping theorem.1 See the rest of Chapter 3 of Fisher for more

discussion and various examples and general methods. We will just look at a few examples.

The case of a segment. Let D be given by the segment from Le−iα/2 to −Leiα/2 for some real

L and α. We start with the case L = 4, α = 0, for which we use the mapping z 7→ w(z) defined

by

z = w(z) +
1

w(z)
.

This is called the Joukowski mapping. To see that the exterior regions {z : Im z ̸= 0 or |Re z| > 2}
and {w : |w| > 1} are in one-to-one correspondence, note that

Re z = Rew(1 + |w|−2), Im z = Imw(1− |w|−2).

and so if R > 1 then the circle |w| = R is mapped to the ellipse passing through the points

±(R+R−1) and ±i(R−R−1). See Figure 5. We can solve for w(z) using the quadratic formula

to obtain

w(z) =
z

2

(
1 +

√
1− 4

z2

)
.

We can use as a complex potential the function

F (z) = v∞w(z) + ic logw(z) + v∞/w(z) = v∞z + ic log z + · · · , (5)

where the first equals sign is the definition of F , and for the second we used w(z) − z → 0 as

z → ∞; the · · · in (5) is a bounded analytic function, defined in the complement of D, with a

series
∑∞

n=0 anz
−n that we do not need to compute.

For the more general segment from Le−iα/2 to −Leiα/2, we multiply z by 4eiα/L to map back

to the segment from −2 to 2, and give w the same factor so that we maintain w(z) − z → 0 as

z → ∞. That gives

w(z) =
z

2

(
1 +

√
1− L2

4e2iaz2

)
. (6)

1Basically, this says that it can be done as long as D is a connected, simply connected, bounded, open set. But

there are some issues to resolve in cases where the boundary of D is not smooth.
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Figure 4. The correspondence z = w + 1
w . The circles |w| = R for various

values of R > 1 on the right, with the respective ellipses on the left. Thus the

exterior regions {z : Im z ̸= 0 or |Re z| > 2} and {w : |w| > 1} are in one-to-

one correspondence. See https://www.desmos.com/calculator/kqeypion7o and

https://www.desmos.com/calculator/1hdmplt0xa.

We once again get F of the form (5), but now with w given by (6).

To determine c, we use Kutta’s principle, which says that if there is a trailing sharp edge,

then f(z) = 0 there so that the flow leaves the edge smoothly. In the case above, the trailing

sharp edge is at z = Le−iα/2, i.e. w = Le−iα/4. To compute c, we substitute w = Le−iα/4

and R = |w| = L/4 into v∞ + ic
w + R2v∞

w2 = 0 and solve for c to get c = v∞L sinα/2. Thus the

magnitude of the lift is

πρv2∞L sinα.

Let’s say for instance we have ρ = 1 kg/m2 (the density of air) v∞ = 10m/s (a nice breeze of

about 22 miles per hour) L = 1m, sinα = 1/5 (our angle with the wind is about 11.5◦). That

gives 20π Newtons of force or about the weight of a 2π kg mass per square meter of sail. If the

sail is 10 square meters that gives about 20π kg, the size of a person.

Note that we are neglecting drag, so α must be small for this to be realistic.

The case of a Joukowski airfoil. We obtain a Joukowski airfoil, which is a classic airplane

wing cross section, by using again z = w + 1
w but replacing the circle |w| = 1 with a circle

|w − p| = |1− p|, with p close to the origin: see Figure 6.

Since w(2) = 1, the trailing sharp edge at z = 2 is mapped to the point 1 on the circle. If we

parametrize the circle with w = p+ |1− p|eit, then w = 1 corresponds to eit = (1− p)/|1− p|, so
t = arg(1−p). This corresponds to the case of a tilted segment with α = −t, sinα = Im p/|1−p|,
and L = 2R = 2|1− p|. Thus the magnitude of the lift force is

2πρv2∞ Im p,

for an airfoil corresponding to a segment of length 4.

https://www.desmos.com/calculator/kqeypion7o
https://www.desmos.com/calculator/1hdmplt0xa
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Figure 5. On the left, the flow with complex potential w+ic log(w)+ 1
16w around

the circle |w| = 1/4, with c = sinα/2, α = 0.3. On the left, the corresponding flow

around the segment from e−iα/2 to −e−iα/2, under the correspondence w(z) =
z
2

(
1+

√
1− 1

4e2iαz2

)
. The two red points are mapped to one another and represent

the trailing edge of the wing; c is chosen so to make the flow smooth there. See

https://www.desmos.com/calculator/qmx8s0q9t9 and https://www.desmos.

com/calculator/dwiiowc77o.

https://www.desmos.com/calculator/qmx8s0q9t9
https://www.desmos.com/calculator/dwiiowc77o
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Figure 6. Above, flow around a Joukowski airfoil with a mistake in the pic-

ture. The bottom edge of the airfoil is not being plotted correctly. See

https://www.desmos.com/calculator/dyehlqpkaw. Below, black is the cor-

rect Joukowski airfoil corresponding to the orange circle, which is centered at

p = (−1+2i)/20 and passes through 1. You can adjust p to get different Joukowski

airfoils here: https://www.desmos.com/calculator/spd2opyyac.

https://www.desmos.com/calculator/dyehlqpkaw
https://www.desmos.com/calculator/spd2opyyac
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